How utilities are working to meet AI data centers voracious appetite for electricity
The welcome screen for the OpenAI “ChatGPT” app is displayed on a laptop screen in a photo illustration. (Photo by Leon Neal/Getty Images.)
Across the U.S. and worldwide, energy demand is soaring as data centers work to support the wide and growing use of artificial intelligence. These large facilities are filled with powerful computers, called servers, that run complex algorithms to help AI systems learn from vast amounts of data.
This process requires tremendous computing power, which consumes huge quantities of electricity. Often, a single data center will use amounts comparable to the power needs of a small town. This heavy demand is stressing local power grids and forcing utilities to scramble to provide enough energy to reliably power data centers and the communities around them.
My work at the intersection of computing and electric power engineering includes research on operating and controlling power systems and making the grid more resilient. Here are some ways in which the spread of AI data centers is challenging utilities and grid managers, and how the power industry is responding.
Upsetting a delicate balance
Electricity demand from data centers can vary dramatically throughout the day, depending on how much computing the facility is doing. For example, if a data center suddenly needs to perform a lot of AI computations, it can draw a huge amount of electricity from the grid in a period as short as several seconds. Such sudden spikes can cause problems for the power grid locally.
Electric grids are designed to balance electricity supply and demand. When demand suddenly increases, it can disrupt this balance, with effects on three critical aspects of the power grid:
- Voltage can be thought of as the push that makes electricity move, like the pressure in a water hose. If too many data centers start demanding electricity at the same time, it’s like turning on too many taps in a building at once and reducing its water pressure. Abrupt shifts in demand can cause voltage fluctuations, which may damage electrical equipment.
- Frequency is a measurement of how electric current oscillates back and forth per second as it travels from power sources to load demand through the network. The U.S. and most major countries transmit electricity as alternating current, or AC, which periodically reverses direction. Power grids operate at a stable frequency, usually 50 or 60 cycles per second, known as hertz; the U.S. grid operates at 60 Hz. If demand for electricity is too high, the frequency can drop, which can cause equipment to malfunction.
- Power balance is the constant real-time match between electricity supply and demand. To maintain a steady supply, power generation must match power consumption. If an AI data center suddenly demands a lot more electricity, it’s like pulling more water from a reservoir than the system can provide. This can lead to power outages or force the grid to rely on backup power sources, if available.
Many industrial data centers in the U.S. draw this amount of power. Examples include Microsoft
READ the latest news shaping the data centre market at Data Centre Central
How utilities are working to meet AI data centers voracious appetite for electricity, source